How to Calculate Battery Capacity for Solar Off-Grid Applications
How to Calculate Battery Capacity for Solar Off-Grid Applications
Sizing a battery for off grid solutions is quite complex from overall system design point of view. If we oversize then we carry the risk of battery not being fully charged and if undersized then we run the risk of not servicing the intended load for the planned duration.
Batteries are used for off grid applications so that the energy stored in the batteries can then be used directly to power DC loads or it can be converted to A/C to power AC loads.
The recommended batteries should be of deep discharge higher cycle count type.
Sufficient information needs to be collected before we start to size the battery bank for any system. The key ingredients are –Kilo Watt Hours of electricity usage per day, Number of Days of Autonomy, Depth of Discharge limit for battery and Ambient temperature at battery bank storage place.
Electrical Usage in the premises: We need to list all the appliances in the premises and their consumption patterns like how much wattage and for how many hours and then tabulate the information to arrive at a total consumption on a per day basis. If you know the kilowatt hours (kWh) per day just multiply that number by 1,000 to determine the Watt-hours per day. (Example: 1.5 kWh = 1,500 Wh)
Days of Autonomy: Next, you must determine the number of days of battery back-up. This may depend upon the no of sun less days in your area. If you’re sizing a battery bank to be used in addition to an on-demand fuel-powered generator, the number of days of backup will represent the number of days you intend to go without using your generator.
Depth of Discharge: Another factor to consider is the planned Depth of Discharge (DoD) of your battery bank. Batteries are rated in terms of charge cycles and D-O-D. A single cycle takes a battery from its fully charged state, through discharge (use), then back to full charge via recharging. The (D-O-D) depth of discharge is the limit of energy withdrawal to which you will subject the battery (or battery bank). DoD is expressed as a percent of total capacity. The further you discharge a battery, the fewer cycles that battery will be capable of completing. Simply stated, deeper discharge shortens the life of the battery.
It’s recommended that one should never discharge a deep-cycle battery below 50% of its capacity; however, many battery manufacturers recommend even lesser DoDs. For off-grid applications, a 25% DoD will extend battery life significantly. On the other hand, if you’re only using the batteries occasionally, as a backup system, you can factor in a DoD of 50% or perhaps more. Number of cycles will determine the life of the battery.
Temperature: Battery life and capacity are affected by the temperature of the storage place of the batteries.
System Voltage: System voltages are typically 12V, 24V, or 48V.
Calculations for sizing the battery bank: Let’s go through the steps below, using the following example system:
- A system load of 5,000 Watt-hours per day
- Three Days of Autonomy (back up) needed
- Planned Depth of Discharge (DoD): 50%
- Battery bank ambient average low temperature 27 C.
- A 48V system
| S. No. | Process | Example |
| A | Identify daily usage in watt-hrs | 5000 Watt Hrs/Day |
| B | Identify sun less days at a stretch/days of autonomy. Multiply WH/Day by this no. | 3 sunless Days / Autonomy for 3 day ::5000X3=15000WH |
| C | Now D-O-D and convert from % to a decimal value and divide result of B above. | 50% D-O-D or 0.5=15000/0.5=30000WH |
| D | Now account for inverter efficiency which is 95-98.6% | 95% =300000/0.95=31578 WH |
Selecting batteries to meet the Amp-hour capacity: We have calculated the Ah required, we have to keep in mind that we should not put more than 3 batteries in parallel to get better life because if we string more than 3 batteries in parallel then in the likely event of uneven charging the life will reduce. We shall require at 48 v 31578/48 Ah.ie. 658 Ah batteries. We can have 4, 12 V, 658 ah batteries and connect them in series to get 48 V 625 Ah or else 8, 12 V, 312.5 Ah batteries and connect four in series and two rows in parallel or else any other combination. Just keep in mind that you can add voltage by series placement of batteries and to achieve current, you have to add in parallel.
Creating the Battery bank: Amps, then Volts Select a battery having Ah close to the one we need. If our requirement is higher the multiply the no of batteries to achieve the Ah capacity needed. Now having achieved the Ah needed, see the voltage of the batteries and to get the desired voltage (as in our case 48 V), check the voltage of the battery and if it is 12 v then multiply by 4 to get 48 v and so on.
This will give you the number of such batteries you would need in each series string.
The total number of individual batteries you will need to complete your battery bank will be the product of the number of strings needed to meet your Ah requirement and the number of batteries per string needed to meet your system voltage requirement.
Total # batteries in bank = (# series strings) X (# batteries per string) You can then compare your candidate battery banks against price, size and availability. Price will also depend on the warranty of the batteries on offer by the vendor.
Suggested Articles

Solar Loans, Subsidies & EMI Plans: Financing Made Easy
Explore solar loans, government subsidies, and flexible EMI plans to make installing solar panels affordable and hassle-free.
The Rise of Clean Energy: Solar Energy Trends in 2023
The solar energy industry is on the rise, as the demand for clean and renewable energy sources continues to increase. 2023 is shaping up to be a big year for the solar energy sector, as new technologies and innovations are expected to drive growth and expand the reach of solar energy.

Everything You Should Know About Solar Batteries
Discover how solar batteries store excess energy, maximize your solar system’s efficiency, and provide reliable power during outages. Learn about the types, benefits, lifespan, and maintenance tips to make the most of your solar investment.

Case Study: Successful Design, Installation, and Commissioning of a 50 kWp Rooftop Solar PV Plant
This case study details our experience in designing, installing, and commissioning a 50 kWp solar PV rooftop power plant. Learn how we overcame technical challenges, optimized system performance, and delivered clean, reliable energy. Discover insights on panel selection, inverter sizing, monitoring, and commissioning processes that ensured maximum efficiency and long-term performance for the rooftop solar installation.

UP Electricity Tariff Increase 2015-16: Rates Rise by Rs 0.40–1.00 per Unit – What Consumers Need to Know
Uttar Pradesh has increased electricity tariffs for 2015-16, ranging from Rs 0.40 to 1.00 per unit. This update explains the revised rates, the sectors affected, and what consumers need to know about the tariff hike.

Delhi Jal Board Solar Project: A Step Towards Sustainable Energy
Delhi Jal Board has embraced solar power, becoming a leader in renewable energy adoption. This initiative highlights the benefits of solar energy, including cost savings, sustainability, and promoting clean energy practices in institutional operations.

Complete Guide to Solar Panel Subsidy Scheme in Haryana
Solar power is not only less expensive, but it is also the most abundant source of clean energy.

Understanding Solar Cells and Modules: A Complete Guide
Understand solar cells and modules, their functioning, and advantages for residential and commercial solar installations.